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Abstract

We combine off-axis electron holography and electron shadow imaging to accurately determine the specimen

thickness and the incident electron beam direction over the illuminated area of a crystal. We, furthermore, quantify the

variations in diffraction intensity with position over the same area. This unique solution to the experimental boundary

condition problem enables us to make precise measurements of mean inner electrostatic potentials and structure factors

that are sensitive to the bonding characteristics of materials. In this paper, we present the results of mean-inner

potential determination from silicon and the newly discovered magnesiumdiboride superconductor.

r 2003 Elsevier B.V. All rights reserved.
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1. Introduction

Since electrons interact strongly with matter,
transmission electron microscopy is limited to the
study of thin regions of materials, usually of
thickness much less than 1 mm. Furthermore, the
amplitude and phase of the electron wave-field
exiting a specimen changes drastically with sub-
milliradian tilt of the incident beam direction, or
onding author. Tel.: +1-631-344-3057; fax: +1-
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with nanometer variation in crystal thickness.
Thus, for electron microscopy and diffraction to
become quantitative on a general basis we need to
know precisely the specimen thickness and inci-
dent beam direction as a function of position
within the illuminated area of the specimen. Lack
of ability to handle the boundary conditions on the
small regions we are dealing with, has resulted in
the view that electron diffraction a qualitative
technique. We show in this paper that by combin-
ing off-axis electron holography (For example see
Ref. [1]) and convergent beam electron diffraction
with the electron beam cross-over several tens of
d.
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micrometers above the specimen [2,3] we can
accurately map the local thickness, i.e., uniquely
determine the boundary conditions. In addition,
we record in one single exposure the diffraction
intensities over a wide range of angles and
thicknesses from these convergent beam diffrac-
tion patterns, referred to as parallel recording of
dark-field images (PARODI). We demonstrate the
determination and uniqueness of the experimental
boundary conditions using silicon as an example
where the crystal structure parameters are better
known than for any other materials. After having
established the strength of the technique, we apply
it to study the newly discovered MgB2 super-
conductor where we determine the mean inner
electrostatic potential and refine the structure
factors of the innermost reflections. (The structure
factors of MgB2 will be published separately.) The
mean inner potential and structure factors are very
sensitive to bonding and closely tied to the
superconducting properties since they are asso-
ciated with the occupied electronic states near the
Fermi level [4]. Measurement of these physical
parameters may shed light on the high super-
conducting transition temperature of 39K in this
structurally simple compound.
Fig. 1. Schematics of the experimental set up for: (a) PARODI;

and (b) off-axis electron holography.
2. Experimental considerations

The principles of off-axis holography and
PARODI are shown in Fig. 1. For more details
see for example Refs. [1–3]. The holography and
PARODI experiments were carried out using
300 keV electrons in a JEOL 3000F field-emission
TEM equipped with electrostatic biprism and
Gatan imaging filter (GIF). The retractable bipr-
ism assembly used for the electron holography
experiments consists of a platinum wire o0.6 mm
in diameter located approximately in the selected
area aperture plane of the microscope, and is
rotatable 790�. In PARODI experiments, we
focus the electron probe above the sample, as
illustrated in Fig. 1(a). In doing so, we form
shadow-images (mainly dark-field images) of
a large illuminated area within the diffraction-
disks that contain not only orientation informa-
tion (as with conventional convergent beam
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Fig. 2. Experimental observations and calculations for Si:

(a) experimental hologram; (b) reconstructed phase map of the

boxed area in (a) with equiphase contour intervals being p: (c–f)
PARODI patterns of the same area (circled in (b)) showing the

0 l l diffraction row. The [1 1�1] zone with the center of Laue

circle at �14.2, 6.55, �7.65 position; (c) energy filtered

experimental pattern; (d–f) calculated patterns based on the

phase map obtained from the hologram (a), using a scaling

factor of 1=CV0 ¼ 13:33ðV0 ¼ 11:5Þ; 13:94ðV0 ¼ 11:0Þ; and

12:78ðV0 ¼ 12:0Þnm/rad, respectively. The contrast of the

0 2 2 disk was enhanced for better visibility; (g) the intensity

profiles of the line-scans in the 0�2�2 disks at the position

marked in (c). The comparison of the intensity maxima suggests

the best fit is (d) with the mean potential of 11.5V.
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electron diffraction), but also thickness profiles, or
Pendell .osung plots, for the many simultaneously
recorded reflections. The thickness profile usually
increases from zero to a maximum value that can
range from ten to several hundred nanometers
depending on the distance from the specimen
to the beam crossover. Previously, our PARODI
experiments were focused on wedge specimens,
i.e., samples with linear thickness increase from the
specimen edge for quantitative electron diffraction
analysis where we have measured variation of
diffraction intensity as a function of thickness. In
practice, however, such an ideal wedge is not
always available. Here, we use off-axis electron
holography to obtain thickness maps of the
illuminated area having an arbitrary thickness
distribution. A well-characterized multi-scan
CCD camera [5] located after the GIF was
used to record both holograms and PARODI
patterns.

We studied fragments of Si obtained by crushing
a piece of bulk Si. The fragments of Si on our holy
carbon film have irregular wedges with a wide
range of wedge angles. We avoid wedges that are
too shallow or too steep. Shallow wedges tend to
bend. Steep wedges are demanding with respect
to spatial resolution, and may cause an additional
need for correction due to the change in the
direction of the transmitted electrons by refrac-
tion. We recorded energy filtered PARODI pat-
terns and, subsequently, holograms from the same
area. The holography experiments were carried
out after having tilted the specimen on the order of
1� to avoid strong Bragg reflections and, therefore,
minimizing the dynamical effects in the hologram.
Fig. 2 shows an experimental hologram and the
phase contour map reconstructed from a holo-
gram obtained by applying a 13V bias to the wire
of the biprism. The equiphase contours are
separated by F ¼ p rad. The phase, F; can be
converted to thickness t by the formula:

F ¼ CV0t: ð1Þ

If the mean inner potential, V0; of Si was
accurately known, since at 300 keV the constant

C ¼
2p
lE

E þ E0

E þ 2E0
¼ 0:00652 rad=V nm: ð2Þ
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Here, l is the wavelength of the incident
electrons, E their kinetic energy, and E0 the rest
mass of an electron. Conversely, the mean inner
potential can be determined from Eq. (1) if the
sample thickness was accurately known. Indeed, the
experimentally determined mean inner potential of
Si ranges between 9.3 and 12.1V [6–8], where the
major reason for this discrepancy is the difficulty in
accurately determining the thickness of the sample.

Most experiments aimed at determining the
mean inner potential are based on a priori knowl-
edge of the geometry of the sample by considering
surface energies and cleavage planes, or consider-
ing particles with well-defined geometrical shapes.
Usually the wedges between these facets are steep
implying densely spaced fringes in the hologram,
and thus the need for high spatial resolution. Such
close fringes are easily washed out with thickness
so that it becomes difficult to measure the phase
shift in thicker regions where the accuracy
increases. Furthermore, the incident beam direc-
tions, where there is a simple relationship between
the distance from the sample edge and the speci-
men thickness t; tend to be zone axes where many
reflections, or Bloch waves, are excited. These
Bloch waves see potentials that are different from
the mean inner potential. To circumvent these
difficulties, our approach is to use the recon-
structed phase maps from the holography experi-
ments as thickness maps (up to an unknown
scaling factor equal to the mean inner potential),
and to combine this information with results from
the PARODI experiments performed on the same
sample region. The mean inner potential then
becomes a free parameter in fitting the PARODI
patterns, which we discuss next.
3. Calculations of shadow images of the PARODI

pattern

The wave function of a diffracted beam at the
exit surface of the specimen can be calculated using
the Bloch wave method [9,10] for fast electrons:

fg ¼
XN

j¼1

cjC
j
gexpð2pig

j tÞ; ð3Þ
Ig ¼ fg � f
�
g : ð4Þ

Here the eigenvector coefficients Cg and eigen-
value g are given by

A
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where Ug is the electron structure factor in units of
(A�2 and the excitation error, 2KSg ¼ K2 � ðK þ
gÞ2; with K the incident beam wavevector. If
including absorption, the matrix A is, in general,
complex. Eq. (5) is a standard equation that can be
diagonalized by using LAPACK computer codes
[11], and the excitation coefficients cj are obtained
by applying boundary conditions at the entrance
surface of the specimen.

For diffraction patterns with a parallel illumina-
tion, i.e., with only one incident beam direction,
we need only solve Eq. (5) once. For conventional
convergent-beam electron diffraction (cCBED),
we focus the incident beam on the sample and a
disk pattern is formed at the back focal plane of
the objective lens where the disk size depends on
the convergent angle of the illumination. Each
point in the central disk is assumed to originate
from the same point of the specimen, but with a
different incident beam direction given by:

Kr ¼ K0 þ r�; ð6Þ

where K0 is the beam direction at the center of the
disk taken to be the coordinate origin and r� the
position vector of the point. Eq. (5) is solved to
obtain the eigenvector and eigenvalue for each
point, and the diffraction intensity for each point
is then calculated by Eqs. (3) and (4). For cCBED,
since the illuminated area is very small, the
thickness is considered to be a constant. The
intensity oscillation within the disks is caused by
the variation of the incident beam direction or
excitation error.
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In PARODI experiments, where we focus the
beam above the sample (Fig. 1a), an extended
region of the sample is illuminated. The size of
the illuminated area depends on the distance from
the specimen to the cross-over and convergence
angle. Similar to cCBED, a disk pattern is formed
in the back focal plane. Each point in the disk
corresponds to an incident beam direction which
can be obtained by the Eq. (6) as with cCBED.
Unlike cCBED, however, each point in the disks
comes from different points of the sample, which,
generally, have different thicknesses. Thus, a
shadow image of the illuminated area is formed
in the disk, or, equivalently, a bright-field image is
formed in the transmitted disk, and dark-field
images in diffracted disks. Therefore, the intensity
oscillation inside the disks depends not only on
incident beam direction but also on the sample
thickness. The calculation of PARODI patterns is
essentially the same as that of cCBED but
replacing the constant thickness with a thickness
map tðx; yÞ in Eq. (3). The thickness map can be
calculated for the illuminated area if there exists a
well-defined geometry, e.g. wedge with linear
relationship between the position and thickness,
as we have previously used for the PARODI
experiments. In the present study we use off-axis
electron holography to experimentally map the
nonlinear thickness distribution over the area of
interest. The thickness map was then used as a 2-D
template for diffraction calculations.
4. Applications

4.1. Mean inner potential of Si

In our experiments, PARODI patterns and
holograms are collected from the same area where
we suppose tðx; yÞ is the thickness of the specimen
and kðx; yÞ the crystallographic direction of the
incident beam. Here, ðx; yÞ are the 2D coordinates
in the specimen plane. Provided the specimen is
not bent over the illuminated area, we know kðx; yÞ
from the PARODI pattern and tðx; yÞ from the
hologram. Thus, we know the experimental
boundary conditions. Since the structure para-
meters including structure factors and thermal
parameters are well known for Si, we can calculate
the PARODI patterns without any fitting para-
meters other than the mean inner potential, as
discussed above. That is to say, the absolute
thickness scale relies on knowing the mean inner
potential of Si. If we start by assuming a mean
inner potential of say 10V we need to adjust
this value until the experimental and calculated
PARODI patterns fit. We arrive, consequently, at
an experimentally derived value for the mean inner
potential.

Figs. 2(c)–(f) show the PARODI patterns of the
0 l l systematic diffraction row in Si with the center
of the Laue circle at �14.2, 6.55, �7.65 position.
The orientation was reached by titling the crystal
3.6� around the [0 1 1]� axis from the [1 1�1] zone
and corresponds to [0�2�2] near the Bragg
position. The energy filtered experimental pattern
is shown in Fig. 2(c). The calculated patterns
shown in Figs. 2(d)–(f) are based on the phase map
obtained from the hologram in Fig. 2(b) using
scaling factors of 1=CV0 ¼ 13:33; 13.94 and
12.78 nm/rad, respectively, to convert the phase
to thickness. The contrast of the 0 2 2 disk was
enhanced for better visibility. The intensity oscilla-
tions of line-scans in the 0�2�2 disks from the
position marked in Fig. 2(c) is plotted in Fig. 2(g).
Comparison of the intensity maxima suggests
Fig. 2(d) is the best fit with a scaled thickness
that corresponds to an inner potential of 11.5V,
while relatively poor agreement with experiment
for Fig. 2(e) (V0 ¼ 11:0V) and Fig. 2(f) (V0 ¼
12:0V). The calculations include over 100 beams.
The thickness variation in the entire illuminated
area, or the PARODI disks, arranges from 0
(vacuum) to 480 nm.

4.2. Mean inner potential of MgB2

Similar experiments were done on the newly
discovered superconductor MgB2. Fig. 3(a) shows
an experimental hologram and the reconstructed
phase map, Fig. 3(b), with superimposed p-
interval contours. Fig. 3(c) is an energy filtered
experimental PARODI pattern of the same area
showing the l 0 l diffraction row with the 1 0 1
reflection near the Bragg position (center of the
Laue circle is at 7.52, 5.71, 9.61, which was tilted
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Fig. 3. Experimental observations and calculations for MgB2

in the l 0 l diffraction row: (a) experimental hologram;

(b) reconstructed phase map with equiphase contour intervals

of p; (c–f) PARODI patterns of the same area. The [1 3�1] zone

with the center of Laue circle at �7.52, 5.71, 9.61; (c) energy

filtered experimental pattern. (d–f) Calculated patterns based

on the thickness map obtained from the hologram (a) using the

scaling factor of 1=CV0 ¼ 13:22ðV0 ¼ 11:6Þ; 14:33ðV0 ¼ 10:7Þ
and 12:27ðV0 ¼ 12:5Þnm/rad, respectively. The contrast of

�1 0�1 disk was enhanced for clarity. The pattern in (d) gives

the best fit to the experiment. The mean potential was

determined to be V0 ¼ 11:6V.
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4.2� from the [1 3�1] zone axis). Figs. 3(d)–(f)
show the calculated patterns based on the thick-
ness map obtained from the hologram (Figs. 3(a)
and (b)) assuming scaling factors 1=CV0 ¼ 13:22
ðV0 ¼ 11:6Þ; 14:33ðV0 ¼ 10:7Þ and 12:27ðV0 ¼
12:5Þ nm/rad, respectively. For clarity the contrast
of the �1 0�1 disk is enhanced. The pattern in
Fig. 3(d) gives the best fit to the experiment. The
mean potential is determined to be V0 ¼ 11:6V.

Another example of experiments and calcula-
tions for MgB2 is shown in Fig. 4. Figs. 4(a) and
(b) are the experimental hologram and recon-
structed phase map with p-interval contours.
Fig. 4(c) is the experimental PARODI pattern
for the 0 0 l diffraction row with the center of
the Laue circle at 2.5, 5, 1.18 (2.8� deviates from
the [2�1 0] zone). Figs. 4(d)–(f) are calculated
PARODI patterns with experimentally refined
structure factors and using V0 ¼ 11:7 (best fit),
V0 ¼ 10:8 and 12:6V, respectively. The value
V0 ¼ 11:7V obtained in this experiment agrees
very well with the value V0 ¼ 11:6V obtained in
the experiment shown in Fig. 3 for MgB2. We note
the error in the refinement of the scaling factor, or
the mean inner potential, depends on several
factors including quality of the sample, the
signal/noise ratio of the holograms and PARODI
patterns, and dynamic effects contributing to the
phase maps reconstructed from the holograms
(see Section 5). We illustrate here, however, the
sensitivity of this technique to charge transfer and
bonding within the crystal. The calculation based
on the use of the scattering amplitudes of free
atoms [12] and a mean inner potential of 11.7V is
shown in Fig. 4(g). (As opposed to V0 ¼ 11:7V,
but using refined structure factors in Fig. 4(d)
representing the best experimental fit.) Fig. 4(h)
plots the intensity profiles of line scans of the 0 0 2
disk at the position marked in Fig. 4(c). Compar-
ison of the intensity maxima positions between
calculations with experiment clearly illustrates that
Figs. 4(e)–(g) do not give good fits to the
experimentally observed PARODI pattern. It also
illustrates that the technique is very sensitive to
the charge transfer and bonding characteristics of
the crystal. As seen in the calculated pattern
(Fig. 4(g)), using scattering amplitudes of free-
atoms, not only do the intensity maxima of the
0 0 2 disk disagree with the experiment, but
also the intensity of the 0 0 1 disk is much too
high.
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5. Dynamic effects on the error analysis

In our quantitative analysis, we note the
importance of error assessment in measuring
the mean inner potential, especially to take the
Fig. 5. Dynamical effects induced phase change, described by

the term D as a function of thickness with different crystal

orientations for MgB2. (a) [1 0 0] zone; (b–f) [2�1 0] zone with

the center of Laue circle at: 0,0,0 (b); 2.5, 5, 0 (c); 2.5, 5, 1 (d);

2.5, 5, 3.5 (e); and 2.5, 5, 4.5 (f).
dynamic diffraction effects into account. Based on
Bloch wave calculations described in Section 3, we
are able to evaluate the changes in the phase shift
(as measured with holography) introduced by the
dynamic diffraction effects. Fig. 5 shows the phase
change introduced by dynamical diffraction de-
scribed by the term D (the phase term, we refer as
D; of the wave function f0 0 0 in Eq. (3)), as a
function of thickness for MgB2 with different
Fig. 4. Experimental observations and calculations for MgB2 in

the 0 0 l diffraction row. (a) Experimental hologram; (b)

reconstructed phase map with equiphase contour intervals of

p: (c–g) PARODI patterns of the [2�1 0] zone with the center

of the Laue circle at 2.5, 5, 1.18. (d–g) Calculations with

experimental refined structural factors: (d) best fit with V0 ¼
11:7; (e) V0 ¼ 10:8; and (f) V0 ¼ 12:6V; (g) calculation using

neutral-atoms with V0 ¼ 11:7V does not give good fit since

the intensity of 0 0 1 disk is too high. (h) The intensity profiles of

the line-scans in the 0 0 2 disks at the position marked in (c).

The comparison of the intensity maxima suggests (e–g) do not

agree with the experiment.
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crystal orientations. We note that the dynamical
effect is very strong when the crystal is at a low
index zone as shown in (a) and (b) of Fig. 5. It is
still quite strong when the crystal is tilted away
from the zone axis to a systematic row orientation.
The curve (c) in Fig. 5 is for the crystal tilted 2.8�

around the [0 0 1]� axis from the [2�1 0] zone,
where the center of the Laue circle changes from
0 0 0 to 2.5, 5, 0 and only the 0 0 l reflections are
strongly excited. The dynamical effect is even
stronger when a reflection with a large structure
factor is at the Bragg position as in Fig. 5(d). This
is due to the strong dynamical coupling between
the incident beam and diffracted beam. The phase
oscillations are similar to the intensity oscillations
as shown in Figs. 3 and 4. This strong dynamical
coupling is, in fact, used to refine the scaling factor
in PARODI patterns (see Figs. 3 and 4 and related
text). However, the total phase retrieved from
holography in this case will significantly deviate
from that based on kinematical calculations using
Eq. (1) since the phase shift due to the dynamical
effect can amount up to 30% of the total phase
change. Moreover, the nonlinear relationship
between the dynamic effect term D and thickness
t causes a divergence during refinement of the
scaling factor in PARODI due to the nonlinear
relationship between the phase map and the actual
thickness distribution. Therefore, in the hologra-
phy experiment, it is necessary to minimize the
dynamical effect.

An obvious choice is to tilt the crystal, i.e., in
this case, around the axis perpendicular to the
[0 0 1]� direction to avoid exciting any strong
reflections. An example for the center of Laue
circle at 2.5, 5, 3.5 is plotted in Fig. 5(e), showing
a linear relationship between D and thickness t

with D ¼ zt (z is a constant). The slope z is
�0.0012 rad/nm, while the CV0 is 0.075 rad/nm.
The ratio of D to the total phase shift is reduced to
1.6%, and we are thus able to correct the dynamic
effect, as reported by Gajdardziska-Josifovska
et al. [6]. Further tilt of the crystal results in no
strongly excited reflections and reduces D to less
than 1% (Fig. 5(f), Laue circle: 2.5, 5, 4.5), where
the error caused by dynamical effects is negligible.
The tilt angle between (d) and (f) shown in Fig. 5 is
only 1.1�.
While we may tilt the sample for holography
experiments in order to reduce the dynamic effects,
this introduces a change in the projected thickness
of the sample relative to the PARODI experiments
carried out on the same area. The thickness change
associated with the tilt angle y discussed above is
Dt=t ¼ ½sinðfþ yÞ � sinðfÞ	=sinðfÞ; where f is the
angle made between the incident beam and sample
surface. Except for sample wedges with steep
facets, f is generally larger than 60�, so the
thickness change introduced by the 1.1� tilt is less
than about 1%. In practice, we record the
PARODI patterns under systematic row diffrac-
tion conditions and then tilt the crystal about 1� to
record the holograms. The error introduced by
such a procedure, including dynamic effects, can
be limited to less than 2%.
6. Conclusions

In summary, combining the experimental tech-
niques of PARODI and off-axis electron hologra-
phy, we are now able to find a unique solution
to the experimental boundary condition problem
that is crucial to quantitative electron micro-
scopy analysis. Using this new approach we
can measure the mean inner potentials of crystals
with a high accuracy that does not involve
uncertainty with a priori knowledge of the thick-
ness variation of the specimen. We thus deter-
mined the mean inner electrostatic potential to be
11.570.5V for Si and 11.770.9V for MgB2.
Furthermore, the method can be used to accu-
rately determine the structure factors of the
innermost reflections of materials in order to
address issues of charge transfer and valence
electron distribution that are responsible for their
functionality.
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